If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-16x-41=0
a = 25; b = -16; c = -41;
Δ = b2-4ac
Δ = -162-4·25·(-41)
Δ = 4356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4356}=66$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-66}{2*25}=\frac{-50}{50} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+66}{2*25}=\frac{82}{50} =1+16/25 $
| 3(2p-7)-3(5p+1)=2-3(p+3) | | 1-6(x+2)=7 | | (2x-1)+(x-1)=x+2 | | 3(2y-2)+14=6(y-1)-(1y+4) | | 9-x=14-7 | | 4+6(2+x)=2(3×+8) | | 5(3+t)=3(4t-1)-45 | | 4+2x=5x-15 | | 16(3m-5)-10(4m-8)=40 | | 10y-7=6 | | (3-X)=(3-x)2 | | 4(3p+1)-7=1 | | 5(2y+15)=25 | | 2=4n-2 | | 7x=8-5x | | 5+2(3+2x)=×+3(×+1) | | (15x-135)-(2x-24)+(5x+30)=0 | | (2x-3)/3=(3x+6)/4 | | (15x-135)-(2x-24)+(+30)=0 | | 4u-2=8u-2 | | X+78x/3=17/6-5x/8 | | 39=5t^2 | | 39,2=5t^2 | | 2+15v=-5+2 | | 2c-11=13 | | 6w-6=5w-19 | | 10y-7-8y=23 | | 3h-2h+7=23-7 | | 2(5x-4)-6(x+2)=7(x-1)+2 | | 7/20=1/5-1/4y | | 1/15=1/3-1/5z | | 2y-3+3y+8=180 |